Inhibitory Regulation of Electrically Coupled Neurons in the Inferior Olive Is Mediated by Asynchronous Release of GABA

نویسندگان

  • Aaron R. Best
  • Wade G. Regehr
چکیده

Inhibitory projection neurons in the deep cerebellar nuclei (DCN) provide GABAergic input to neurons of the inferior olive (IO) that in turn produce climbing fiber synapses onto Purkinje cells. Anatomical evidence suggests that DCN to IO synapses control electrical coupling between IO neurons. In vivo studies suggest that they also control the synchrony of IO neurons and play an important role in cerebellar learning. Here we describe the DCN to IO synapse. Remarkably, GABA release was almost exclusively asynchronous, with little conventional synchronous release. Synaptic transmission was extremely frequency dependent, with low-frequency stimulation being largely ineffective. However, due to the prominence of asynchronous release, stimulation at frequencies above 10 Hz evoked steady-state inhibitory currents. These properties seem ideally suited to transform the firing rate of DCN neurons into sustained inhibition that both suppresses the firing of IO cells and regulates the effective coupling between IO neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Effect of asynchronous GABA release on the oscillatory dynamics of inhibitory coupled neurons

Neuronal activities often exhibit rythmic patterns, with a frequency that changes from one band to another. These oscillations can be reproduced in network models of coupled inhibitors. However, the mechanism that controls the period of the oscillations is not fully understood. Recent studies have shown that various types of inhibitory interneurons may release transmitters synchronously or asyn...

متن کامل

Different types of retinal inhibition have distinct neurotransmitter release properties.

Neurotransmitter release varies between neurons due to differences in presynaptic mechanisms such as Ca(2+) sensitivity and timing. Retinal rod bipolar cells respond to brief dim illumination with prolonged glutamate release that is tuned by the differential release of GABA and glycine from amacrine cells in the inner retina. To test if differences among types of GABA and glycine release are du...

متن کامل

The mammalian interaural time difference detection circuit is differentially controlled by GABAB receptors during development.

Throughout development GABA(B) receptors (GABA(B)Rs) are widely expressed in the mammalian brain. In mature auditory brainstem neurons, GABA(B)Rs are involved in the short-term regulation of the strength and dynamics of excitatory and inhibitory inputs, thus modulating sound analysis. During development, GABA(B)Rs also contribute to long-term changes in input strength. Using a combination of wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2009